

XII MCQ - MATHEMATICS QUESTION PAPER - SET B

1. If
$$\begin{bmatrix} a+b & 2 \\ 5 & ab \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$$
 Find values of a and b

- (A) A=5 and b=1 or a=1 and b=5
- (B) a=3 and b=7 or a=7 and b=3

(C) a=1; b=1

- (D) a=4 and b=7 or a=7 and b=4
- If a function F:R \rightarrow R be defined by $x = x^2 + 5x + 9$ then x = -12.

- $(A) \{0,-4\}$
- (B) $\{0, -6\}$
- $(C) \{0, -5\}$
- (D) $\{0, -1\}$

- 3. The law a+b=b+a is called
 - (A) Closure law

(B) Associative law

(C) communicative law

- (D) distributive law
- If $\sin^{-1} x) c \ s^{-1} x) = \frac{\pi}{6} then x =$ 4.

 - (A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) $-\frac{1}{2}$
- (D) None of these

- $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$ then 5.
 - (A) X=0, y=5
 - (B) x + y = 5
- (C) x=y
- (D) None of these
- If A and B are square matrices of order 2 then det(A+B) = 0 is possible when 6.
 - (A) $\det(A) = 0 \text{ or } \det(B) = 0$

(B) \det (A) + \det (B)=0

(C) $\det(A) = 0$ and $\det(B) = 0$

- (D) A+B=0
- $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ then value |adjA| is
 - (A) a^{27}
- (B) a^9
- (C) a^6
- (D) a^2
- The system of equation x + y + z = 2; 3x y + 2z = 6 and 3x + y + z = -18 has 8.
 - (A) a unique solution

- (B) no solution
- (C) an infinite number of solution
- (D) zero solution as the only solution
- If $F(x) = (x+1)^{cotx}$ be continuous at x = 0 the F(0) equal t9.
 - (A)0

(B) $\frac{1}{a}$

- (C) e
- (D) None of these

10.	Let, $F(x) = -$	$\begin{cases} ax^2 + 1 \\ x + \frac{1}{2} \end{cases}$	$\begin{array}{l} x > 1 \\ x \le 1 \end{array} then F$	x) is derivable at $x = 1$ i
-----	-----------------	---	--	------------------------------

(A) a = 2

(B) a = 1

(C) a = 0

(D) $a = \frac{1}{2}$

For the curve $\sqrt{x} + \sqrt{y} = 1$; $\frac{dy}{dx}$ at $(\frac{1}{4}, \frac{1}{4})$ is 11.

(A) $\frac{1}{2}$

(B) -2

(C) -1

(D) 2

If $F(x) = l(g_{x^2} l(gx))$ then F'(x) at x = e is 12.

(A) 0

(B) 1

 $(C)\frac{1}{a}$

(D) $\frac{1}{2e}$

If $y^2 = ax^2 + bx + c$, then $y^3 \left(\frac{d^2y}{d_{x^2}} \right)$ 13.

(A) constant

(B) a function of x- only

(C) a function of y only

(D) a uncti n x and y

If $V = \frac{4}{3} \pi r^3$ at what rate in cubic units is V increasing when r=10 and $\frac{dr}{dt}$ =0.01 14.

(A) π

(B) 4π

(C) 40π

(D) $\frac{4\pi}{2}$

15. If there is an error of 2.1 in measuring the length of a simple pendulum then percentage error in its period is

(A) 1%

(B) 2%

(C)3%

(D) 4%

16. The equation of the normal to curve $y = \sin x$ at (0,0) is

(A) x = 0

(B) v = 0

(C) x+v=0

(D) x-y=0

 $\int |x|^3 dx$ is equal to 17.

(A) $-\frac{x^4}{4} + c$ (B) $\frac{|x|^4}{4} + c$ (C) $\frac{x^4}{4} + c$

(D) None of these

The value of $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$ is 18.

(A) $2c \ s\sqrt{x} + c$ (B) $\sqrt{\frac{\cos x}{x}} + c$ (C) $\sin \sqrt{x} + c$ (D) $2\sin \sqrt{x} + c$

In a \triangle ABC if C is a right angle then $\tan^{-1}\left(\frac{a}{b+c}\right) + tan^{-1}\left(\frac{b}{c+a}\right) =$ 19.

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{4}$

 $(C)\frac{5\pi}{2}$

ducation Mk ur Path towards success.	20.	The maximum value of	$x^{1/x}; x > 0 is$		
		(A) $e^{1/e}$	$(B)\left(\frac{1}{e}\right)^0$	(C) 1	(D) None of these
	21.	The value of integral $\int_{-\infty}^{\infty}$	$\int_{-2}^{2} 1 - x^2 dx$ is		
		(A) 4	(B) 2	(C) -2	(D) 0
	22.	$\int_{1}^{\sqrt{3}} \frac{1}{1+x^2} dx$ is equal to			
		$(A)\frac{\pi}{12}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{3}$
	23.	$\int_0^{2a} x) dx \text{ is equal t}$			
		(A) $2\int_0^a x)dx$		(B) 0	
		(C) $\int_0^a f(x) dx + \int_0^a f(x) dx$	(2a-x)dx	(D) None of these	
	24.	The area of region bou	ınded by x-axis and cui	$\operatorname{rve} y = c sx when$	$0 \le x \le 2\pi$ is
		(A) 0	(B) 2	(C) 3	(D) 4
	25.	The general solution of	f differential equation $\frac{d}{d}$	$\frac{y}{x} = \frac{y}{x}$ is	
		$(A)\log y = kx$	(B) $y = kx$	(C)xy=k	(D) $y = kl gx$
	26.	If \vec{a} , \vec{b} , \vec{c} are three non-	-zero vector, no two of	which are collinear	and the vector \vec{a} + \vec{b} is
		collinear with $ ec{c} $, $ ec{b} $ +	$ec{c}$ collinear with $ec{a}$ then	$\vec{a} + \vec{b} + \vec{c} = ?$	
		(A) \vec{a}	(B) \vec{b}	(C) \vec{c}	(D) None of these
	27.	The integrating factor	of differential equation	$1 x \frac{dy}{dx} - y = 2x^2$	
		(A) e^{-x}	(B) e^{-y}	(C) $\frac{1}{x}$	(D) x
	28.	If point $A 60i + 3j$; $A 60i + 3j$	8 40i — 8j)and C ai —	- 52j)are c llinear	then a is equal t
		(A) 40	(B) -40	(C) 20	(D) -20
	29.	OACB is a parallelogram (A) $\vec{a} + \vec{b}$)	m with $\overrightarrow{OC} = \overrightarrow{a}$ and \overrightarrow{AB} (B) $\overrightarrow{a} - \overrightarrow{b}$	$\vec{B} = \vec{b} \ then \ \overrightarrow{OA} \ is$ $(C) \frac{1}{2} \ \vec{b} - \vec{a})$	$(D)^{\frac{1}{2}} \vec{a} - \vec{b})$
	30.	The line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and	$\frac{x-1}{z^2} = \frac{y-2}{z-4} = \frac{z-3}{z-6}$ are		
		(A) C incident	(B) <i>Skew</i>	(C) Intersectin	g (D) Parallel

Augation Mk					
ur Path towards success.	31.	Then equation of plane	which cuts equal interce	ept of units length on th	ne co-ordinate axes is
		(A) $x + y + z = 1$	(B) $x + y + z = 0$	(C) x + y - z = 1	(D) $x + y + z = 2$
	32.	Which of the following	sets are convex		
		(A) $\{x, y\}; x^2 + y^2 \ge 1$	}	(B) $\{ x, y \}; y^2 \ge x \}$	
		(C) $\{x, y\}$; $3x^2 + 4y^2 \ge$: 5	(D) $\{ x, y \}; y \ge 2, y \le 2$	[4]
	33.	Out of 30 consecutive in odd is	ntegers 2 are choosen at	random. The probabili	ty that their sum is
		(A) $\frac{14}{29}$	(B) $\frac{16}{29}$	(C) $\frac{15}{29}$	(D) $\frac{10}{29}$
	34.	The probability that a le	eap year will have 53 Fri	days or 53 Saturdays i	S
		$(A)\frac{2}{7}$	(B) $\frac{3}{7}$	$(C)\frac{4}{7}$	$(D)\frac{1}{7}$
	35.	If X is a random- variabl	e with probability distrib	oution as given below	
			1 2 3 3k 3k k		
		The value of k and it's v	variance are		
		$(A)\frac{1}{8},\frac{22}{27}$	(B) $\frac{1}{8}$, $\frac{23}{27}$	(C) $\frac{1}{8}$, $\frac{24}{27}$	(D) $\frac{1}{8}$, $\frac{3}{4}$
	36.	Image of (1,6,3) in the lit (A) (0,1,7)	ne $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ (B) (1,7,0)	(C) (1,0,7)	(D) (7,7,0)
	37.	Equation of y – axis in 3 (A) $\frac{x}{0} = \frac{y}{1} = \frac{z}{0}$		$(C)\frac{x}{0} = \frac{y}{0} = \frac{z}{0}$	(D) y = 0
	38.	D.C 's of x – axis are (A) 1,0,0	(B) 0,1,0	(C) 0,0,1	(D) 0,0,0
	39.	Direction angle of z – a	axis are		

(A) 0°,90°,90°

(B) 90°,90°,0°

(C) 0°,90°,0°

(D) 0°,0°,90°

40. Angle between 2 diagonals of a cube is

(A) $sin^{-1}\left(\frac{1}{3}\right)$

(B) $c \ s^{-1} \left(\frac{2}{3}\right)$

(C) $sin^{-1}\left(\frac{2}{3}\right)$

(D) None of these

Angle between the vectors with drs proportional to 4,-3,5 & 3,4,5, is 41.

(A) $\frac{\pi}{4}$

(B) $\frac{\pi}{6}$

(C) $\frac{\pi}{12}$

(D) $\frac{\pi}{3}$

42.	$[\hat{i}\hat{j}\hat{k}] =$ (A) 1	(B) 0	(C) 2	(D) -1	
43.	$[\hat{\imath}\hat{\imath}\hat{\imath}] =$				
	(A) 1	(B) 0	(C) 2	(D) -1	
44.	Two dice are thro	own simultaneously. If $\frac{1}{3}$	X denotes the number of (C) $\frac{2}{3}$	sixes then $E(x) = (D)\frac{1}{2}$	
45.	In a single throw (A) $\frac{2}{7}$	of a dice, if X denotes the (B) $\frac{7}{2}$	ne number on its upper f $(C) \frac{1}{7}$	Face, then mean of X is $(D) \frac{1}{2}$	
46.	of the binomial d	istribution is	umber is considered as s		ì
	(A) $\frac{1}{2}$	(B) 3	(C) $\frac{1}{4}$	(D) $\frac{3}{4}$	
47.	For a binomial di (A) 16	stribution if mean is 4 & (B) 24	& variance 3, then number (C) 36	er of trials is (D) 4	
48.	Which of the follo	owing does not represe	nt a CONVEX set?		
	(A)	(B)	(C)	(D)	
49.	In LPP if there is	no solution, then the co	ondition is known as		
	(A) Condition of f	easibility	(B) Condition of in	feasibility	
	(C) Both (A) and	(B)	(D) None of these		
50.	LPP can be solved	using			
	(A) Iso – profit m	ethod	(B) Iso - cost meth	nod	
	(C) Corner Point	Method	(D) All of the above	e	

XII MCQ - BIOLOGY

QUESTION PAPER – SET B

1.	Crassulacean acid met	abolism operates in		
	(A) In succulents		(B) in hydrophy	/tes
	(C) in mesophytes		(D) In non-succ	ents
2.	Which of the following (A) ZIFT - Gamete Intro (B) AI - Artificial insen (C) IUI - Inter -uterine (D) ICSI - Inter cytopla	a fallopian transfer nenation insemination		
3.	A chlorophyll molecul	e has the magnesium loc	ated in the	
	(A) Phytol chamber		(B) Centre of porp	ohyrin
	(C) Corner of porphyrin	า	(D) Isocyclic ring	
4.	To evolve pureline in a	animals which breeding r	method is required ?	
	(A) Cross-breeding		(B) In-breeding	
	(C) Out-Crossing		(D) Interspecific h	ybridisation
5.	R.Q is measured by			
	(A) Auxanometer		(B) Ganong's poto	ometer
	(C) Ganong's respirom	eter	(D) Darwin's poro	meter
6.	 Read the following statements (I) After implantation finger like projections appear on the trophoblast called chorionic vill (II) Placenta acts as an endocrine gland (III) The placenta facilitate the supply of carbondioxide and nutrients to the embryo How many of the above statements are not correct 			
	(A) 1	(B) 3	(C) 2	(D) zero
7.	In amoeboid type of ta	apetum, the cell fuse to f	orm	
	(A) Plasmodium	(B) Proubisch bodies	(C) Ubisch bodies	(D) None of these
8.	. ,	linked recessive		
9.	Antibiotics are mostly (A) Fungi	obtained from (B) Actinomycetes	(C) Cyanobacteria	(D) A and B

10.	Human blood group i	s example of		
	(A) Dominance		(B) Codominance	9
	(C) Multiple allelism		(D) All of these	
11.	MOET is a method of			
	(A) Fish cultivation		(B) Birth control	in humans
	(C) Cloning in sheep		(D) Hybridization	in cattles
12.	If heterozygous tall a progeny will be obtain		t is crossed with dwarf a	and green seeded plant the
	(A) 3:1	(B) 9:3:3:1	(C) 1:1:1:1	(D) 12:3:1
13.	GAATTC is the recogn	ition site of which of th	e following restriction e	endonuclease.
	(A) Hird III	(B) Eco RI	(C) Bam I	(D) Hae III
14.	Which class of tissue	seems to be the most p	rimitive among all types	s of tissues ?
	(A) Fibres	(B) Vessels	(C) Parenchyma	(D) Sieve tubes
15.	The sequence of DNA	not translated is		
	(A) Introns	(B) Exons	(C) Cistrons	(D) Recons
16.	 Consider the following four statements (a-d) and select the option which includes all the incorrect ones only. (a) Cross-breeding allows the desirable qualities of two different species to be combined. (b) Wax is the food of high nutritive value and is used in the preparation of cosmetics and polishes of various kinds. (c) Pisciculture is an industry devoted to the catching processing or selling of fish, shellfish or other aquatic animals. (d) Controlled breeding experiments are carries out using artificial inseminatism Options: 			
	(A) Statement (b), (c)	and (d)	(B) Statement (a)) and (d)
	(C) Statement (c) and	(d)	(D) Statement (a)	, (c) and (b)
17.	The gene that encode	es for BT protein, specif	ic to co on bollworm is	
	(A) Cry I AC	(B) Cry II ABC	(C) Cry II AC	(D) Cry II AB
18.	Read the following statements (I-IV) (I) The first movement of the foetus and appearance of hair on the head are usually observed during fourth month (II) SAHELI a new oral contraceptive for the females (III) MTPs are considered relatively safe during the second trimester (IV) The corpus luteum secretes large amount of estrogen which is essential for maintenance of the endometrium			

How many statement are incorrect?

- (A) Four
- (B) Three
- (C) Two
- (D) One

- 19. The growth of a population is determined by
 - (A) Natality rate

(B) Mortality rate

(C) Vital index

- (D) Population density
- 20. The treatment of snake bite by antivenom is an example of
 - (A) Specific natural immunity

- (B) Naturally acquired passive immunity
- (C) Artificially acquired passive immunity
- (D) Artificially acquired active immunity

- 21. Streptokinase TPA helps in
 - (A) Cleaning blood clots

(B) Increasing plasma

(C) Dissolving tissue

- (D) Increasing O.P of cell
- 22. In Drosophilia the genes for eye colour and body colour are present on _____ and distance between the genes is _____ cM
 - (A) X chromosome, 1.3

(B) X chromosome, 37.2

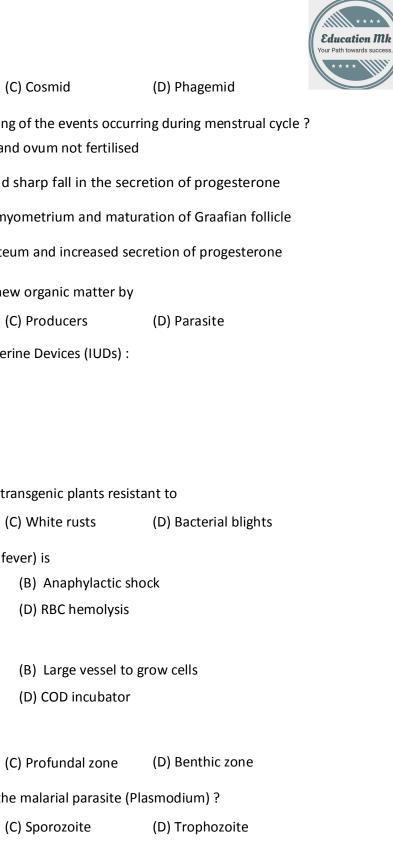
(C) Autosome, 1.3

- (D) Autosome, 37.2
- 23. The polyembryony was first observed in
 - (A) Coconut
- (B) Cycas
- (C) Citrus
- (D) Tomato

- 24. Which of the following is properly matched
 - (A) Membrane Attack complex Natural killer cells
 - (B) Phagolysosomes Hydrolytic enzymes
 - (C) Active immunity Immediately effective
 - (D) MHC-I Antigen presenting cells Only on antigen
- 25. Given below are four methods (1-4) and their modes of action (a-d) in achieving contraception. Select their correct matching from the four options that follow

	Method		Mode of Action
1.	The pill	(a)	Prevents sperms reaching cervix
2.	Condom	(b)	Prevents implantation
3.	Vasectomy	(c)	Prevents ovulation
4.	Copper T	(d)	Semen contains no sperms

Matching:-


(A) 1 - (c), 2 - (d), 3 - (a), 4 - (b)

(B) 1 - (b), 2 - (c), 3 - (a), 4 - (d)

(C) 1 - (c), 2 - (a), 3 - (d), 4 - (b)

(D) 1 - (d), 2 - (a), 3 - (b), 4 - (c)

26.	Ranikhet disease is d	caused by		
	(A) Bacteria	(B) Virus	(C) Fungus	(D) Parasite
27.	(A) His work could not(B) His work was not(C) He could not prov	nin unrecognised till 1900 ot be widely publicised supported with required wide any proof for existen ne was not accepted by h	data ce of factors	
28.	The initiation codon in	n protein synthesis is		
	(A) AUG only	(B) GUG only	(C) Met	(D) AUG or GUG
29.	What is the figure give	ven below showing in part	icular?	
	(A) Tubectomy	(B) Vasectomy	(C) Ovarian cancer	(D) Uterine cancer
30.	Double fertilization of	occurs in		
	(A) Ovule	(B) Embryo	(C) Ovary	(D) Embryo Sac
31.	Which of the following (A) Widal test (C) ELISA test	ng diagnostic test is perfo	rmed for analysis of typ (B) PSMP (D) Western blot to	
32.	PCR technique discov	vered by		
	(A) Hamilton Smith	(B) Watson and Crick	(C) Mendel	(D) Mullis
33.	ones only. (I) Amount of glucose (II) Honey is the focus polishes of various kin (III) Pisciculture is an other aquatic animals	e is maximum in honey. od of high nutritive value nds. n industry devoted to the	e and is used in the processing o	nich includes all the incorrect eparation of cosmetics and or selling of fish, shellfish or
	(A) Statement (II), (III		(B) Statement (I) a	
	(C) Statement (III) and	d (IV)	(D) Statement (I), (II) and (III)

	(A) pBR322	(B)	(C) Cosmid	(D) Phagemid		
35.	Which one of the following is the correct matching of the events occurring during menstrual cycle (A) Menstruation: Breakdown of myometrium and ovum not fertilised					
	(B) Ovulation : LH ar	nd FSH attain peak level	and sharp fall in the sec	retion of progesterone		
	(C) Proliferative pha	se : Rapid regeneration o	of myometrium and matu	uration of Graafian follicle		
	(D) Secretory Phase :	Development of corpus	luteum and increased se	ecretion of progesterone		
36.	Secondary productiv	vity is rate of formation o	f new organic matter by			
	(A) Consumers	(B) Decomposers	(C) Producers	(D) Parasite		
37.	(A) prevent ovulation(B) make uterus unse	uitable for implantation	Uterine Devices (IUDs) :			
	(C) increase phagocy(D) suppress sperm r	·				
		•				
38.	Silencing of m-RNA h	nas been used in producir	ng transgenic plants resis	tant to		
	(A) Bollworms	(B) Nematodes	(C) White rusts	(D) Bacterial blights		
39.	Most severe sympto	m of salmonellosis (enter	ric fever) is			
	(A) Immuno deficiend	Cy	(B) Anaphylactic sl	nock		
	(C) Intestinal perfora	tion	(D) RBC hemolysis			
40.	Bioreactor is a					
	(A) Atomic reactor		(B) Large vessel to	grow cells		
	(C) BOD incubator		(D) COD incubator			
41.	In a lake phytoplank	ton grow in abundance ir	ı			
	(A) Littoral zone	(B) Limnetic zone	(C) Profundal zone	(D) Benthic zone		
42.	Which of the followi	ng is the infective stage c	of the malarial parasite (F	Plasmodium) ?		
	(A) Gametocyte	(B) Merozoite	(C) Sporozoite	(D) Trophozoite		
43.	Second trophic level	in lake is				
	(A) Fishes	(B) Phytoplankton	(C) Zooplankton	(D) Benthos		

34.

The first artificial cloning vector was

Identify the human development stage shown below as well as the related right place of 44. its occurrence in a normal pregnant woman, and select the right option for the two together. (A) Developmental stage - Blastocyst; Site of occurrence - Uterine wall (B) Developmental stage - 8 - celled morula; Site of occurrence - Starting point of Fallopian tube (C) Developmental stage - Late morula; Site of occurrence - Middle part of Fallopian tube (D) Developmental stage - Blastula; Site of occurrence - End part of Fallopian tube 45. Climax community is in a state of (B) Equilibrium (A) Non-equilibrium (C) Disorder (D) Constant change 46. Fruit fly was suitable for Morgan's work because it (A) Is bisexual (B) Complete life cycle in two days (C) Has many type of hereditary variations (D) All of these 47. Maximum energy amongst ecosystem is contributed by (A) Crops (B) Forests (C) Corals (D) Fuelgas Females produce two types of gametes in 48. (A) Hen (B) Human beings (C) Cockroach (D) Honey Bee 49. Mycorrhiza shows (A) Symbiotic relationship (B) Proto-co-operation (C) Commensalism (D) Ectoparasitism 50. Consider the given sequence carefully. (a) Mammary tubules → Mammary duct → Mammary ampulla (b) Spermiation \rightarrow Semination \rightarrow Ejaculation (c) Mature follicle→LH surge → Ovulation (d) Fertilization→Cleavage → Embryo formation

(C) a, b, c

(D) None of these

Which of the above are not correct

(B) a, b

(A) a, b, c, d

XII MCQ - CHEMISTRY

QUESTION PAPER – SET B

1.	Which of the follow	ring compound is gas at r	oom temperature?	
	(A) $HCHO$	$_{\sf (B)}\mathit{CH}_3\mathit{CHO}$	(C) CH_3COCH_3	$(D)CH_3CH_2OH$
2.	$(1) CH_3CH_2CH_2C$	ounds according to their ^{0}H (2) $CH_{3}CO_{2}CH_{3}$ (4) $CH_{3}CH_{2}$	CH_3	
	(A) $2 > 1 > 3 > 4$	(B) $4 > 3 > 2 > 1$	(C) $1 > 2 > 3 > 4$	(D) $1 > 4 > 2 > 3$
3.	Write the IUPAC nar (A) Vinyl Ethyl Keton (C) 3-keto pent-1-en	the of $CH_2=CH-C$		
4.	Which of the followi (A) Acetaldehyde	ng does not have α-H (B) Benzaldehyde	(C) Acetone	(D) Acetophenone
5.	(+ effect is shown	by		
	(A) ₂	(B) – <i>C</i>	(C) <i>Cl</i>	(D) – CH_3 CH_2
6.	Which of the followin	g is paramagnetic		
	(A) N ₂	(B) <i>NO</i>	(C) <i>CO</i>	(D) O ₃
7.	Reaction of cold dil. A	$IaOH$ with CI_2 gives		
	(A) Cl ⁻ ,ClO ⁻ (C) Cl ⁻ ,ClO ₃ ⁻		(B) ClO₂⁻,ClO₃⁻ (D) None of these	:
8.	Which of these pairs I	nave same bond order		
	(A) N_2 ,CO	(B) <i>CO, NO</i>	(C) O_2 , NO	(D) O_2 , H_2
9.	After removing the h the egg will	ard shell of an egg by <i>HC</i>	$^{\circ}l$ it is kept in a saturated Λ	<i>laCl</i> solution, the size of
	(A) Shrink	(B) Grow	(C) Remain same	(D) None of these
10.			n has 2.65 gms of Na_2CO_3 . e resultant molarity of the (C) 0.001 I	solution
11.	Which of the followi	ng pair shows positive de	eviation from Raoult's law	?
	(A) H ₂ O/HCl	(B) C ₆ H ₆ /CH ₃ OH	(C) H ₂ O/HNO ₃	(D) CH ₃ COCH ₃ /CHCl ₃

12.	2. The rise in the boiling point of a solution containing 1.8 gm of Glucose in 100g of solvent 0.1° (The molal elevation constant of the liquid is			
	(A) 0.01 K/m	(B) 0.1 K/m	(C) 1 K/m	(D) 100 K/m
13.	The unit of the rate	constant for first orde	r reaction is	
	(A) mol ⁻¹	(B) sec ⁻¹	(C) sec ⁻¹ mol ⁻¹ dm ³	(D)sec ⁻¹ mol dm ³
14.	(A) Molarity does no (B) Molality does no	ring statement is corre ot change with temper ot change with temper not change with tempe	rature ature	
				g the conc. of B same rate s. rate law can be given as
	$ \text{(A)} r = k[A][B] $ $ \text{(C)} r = k[A][B]^2 $		$_{(B)} \ r = k[A] \ _{(D)} \ r = k[A]$	$A]^{2}[B]$ $A^{2}[B]^{2}$
16.	For the reaction $\ _{BrC}$	$P_3^-(aq) + 5Br^-(aq) + 6$	$3H^+(aq) \longrightarrow 3Br_2(l) + 3H_1$	$I_2O(l)$
	Which of the relation		,	
	(A) $\frac{d[Br_2]}{dt} = \frac{3}{5} \frac{d}{dt}$ (C) $\frac{d[Br_2]}{dt} = \frac{5}{3} \frac{d}{dt}$			$=rac{-3}{5}rac{d[Br^{-}]}{dt} \ =rac{-5}{3}rac{d[Br^{-}]}{dt}$
17.	A ligand can be regar	rded as		
	(A) Lewis acid	(B) Lewis base	(C) Bronsted acid	(D) Bronsted base
18.	Primary and seconda	ary valency of platinur	n in the complex [Pt(en) ₂	Cl ₂] are
	(A) 4,6	(B)2 ,6	(C)4, 4	(D) 6, 4
19.	How many different $CH_3CH=CH$		vill form in the reaction?	
	(A) 1	(B) 2	(C) 3	(D) 0
20.	(A) It is planar	s are sp ² hybridised	rue about Benzene? Igle bond, 3 double bond	
21.	The EAN of [Mn(Cl		(C) 35	(D) 36

22.	How many doub	ie bonds are present i	n C6H10Cl2Bl2			
	(A) 0	(B) 1	(C) 2	(D) 4		
23.	In hcp arrangen	nent atoms present at	the corners are shared	d by how many cells		
	(A) 2	(B) 4	(C) 6	(D) 8		
24.	What % of space	e is free in BCC arrang	ement			
	(A) 12	(B) 22	(C) 32	(D) 42		
25.			nged in FCC and ato formula of the compou	ms of B are located in all and is		
	(A) A _s B	(B) AB _s	(C) AB	(D) None of these		
26.	How many tetra	hedral sites are there	in FCC unit cell			
	(A) 2	(B) 4	(C) 6	(D) 8		
27.	What is the distance between two nearest atom in BCC arrangement if the side length of The unit cell is 'a'					
	(A) a	(B) $\sqrt{3a}$	(C) (D) $3\sqrt{3}$	$\frac{\sqrt{3a}}{2}$		
			(5) 5 (5)			
28.	Cinnabar and Ba	auxite are ores of				
	(A) Hg & Fe	(B) Al & Fe	(C) Fe & Al	(D) Hg & Al		
29.	Mg ²⁺ is isoelect	ronic with				
	(A) Ca ²⁺	(B) Na ⁺	(C) Ba ²⁺	(D) Cu ²⁺		
30.	Bakelite is form (A) HCHO	ed from the reaction (B) HCOOH	of Phenol with (C) CH₃CHO	(D) CH₃OH		
31.	Nylon is not a (A) Co-polymer (C) Condensation	on polymer	(B) Polyamide (D) Natural polym	ner		
32.	Monomers of Bo (A) Butadiene , i (C) Butadiene , t		(B) Butadiene , st (D) Butadiene , vi			
33.	Which of the po	olymer is used for nor (B) Teflon	ı-stick coating on cooki (C) Backelite	ing wares (D) Buna - S- rubber		

34.	(A) Catalysts are se	ring statement is false lective the activation energy		sts affect the equilibrium sts affect the mechanism
35.	If KMnO ₄ is reduce	ed to oxalic acid in an a	acidic medium, then c	oxidation no. of Mn changes
	(A) 4 to 2	(B) 6 to 4	(C) 7 to 2	(D) 7 to 4
36.	Temperature of a sy (A) Adiabatic comp (C) Isothermal com	ression	• •	tic expansion mal expansion
37.	Which of the follow (A) H ₂ O (g)	ving species has zero s (B) Cl ₂ (g)	tandard molar enthal (C) Br ₂ (g)	py of formation at 25°C (D) CH ₄ (g)
38.		ction at temperature T then the reaction wou		
	(A) Te = T	(B) Te < T	(C) Te > T	(D) None of these
39. The activation energy of forward reaction $X \to Y$ is $60~KJ~Mol^{-1}$ and L -20 KJ Mol ⁻¹ . The activation energy for the reverse reaction is				Mol^{-1} and ΔH is
	(A) 60 KJ Mol ⁻¹	(B) 60 KJ Mol ⁻¹	(C) 80 KJ Mol ⁻¹	(D) 20 KJ Mol ⁻¹
40.	The impurities asso (A) Slag	ciated with mineral us (B) Gangue	sed in metallurgy are ((C) Flux	called collectively (D) Froth
41.	Calcination is used (A) water and sulph (C) water and CO ₂	in metallurgy for the r ide	emoval of (B) water (D) water a	
42.	If a gas expands at constant temperature then (A) No. of the molecules of the gas increases (B) K.E. of the molecules increases (C) K.E. of the molecules decreases (D) K.E. of the molecules remains the same			
43.	Faraday's constant (A) Charge carried (C) Charge carried		(B) Charge (D) none o	carried by 1 mol of electrons f these
44.	through 1M solutio	n of Pt ⁴⁺) F electricity is passed
	(A) 0.80 mol	(B) 8 mol	(C) 0.20 mol	(D) 1 mol
45.	Bell metal is an allo (A) Cu. Zn and Sn		(C) Cu and Zn	(D) Sn and Zn

46. Which of these has highest packing efficiency

(A) SCC

(B) BCC

(C) FCC

(D) ECC (Edge centred)

47. Which of these is correct IUPAC name

(A) Prop-2 ene

- (B) Pentan -3- al
- (C) Pentan -1 -one
- (D) Pentan -2- one

48. Which of the following is most acidic

(A) OH

- (B) O
- (C) OH
- (D) OH

- 49. Faraday's first law of electricity states :
 - (A) For the same electrolyte, the mass of a substance produced or consumed at an electrode directly proportional to the quantity of electricity passed through the elctrolyte cells
 - (B) For the same electrolyte, the mass of a substance produced or consumed at an electrode is inversly proportional to the quantity of electricity passed through the elctrolytic cell
 - (C) When the same quantity of electricity is passed through different electrolytes, the amounts of products obtained are proportional to their equibalent weights
 - (D) When same quantity of electricity is passed through different electrolytes, the amounts of products obtained are proportional to their molecular masses
- 50. Boiling point as a result of Intramolecular H- bonding
 - (A) Increases
- (B) Decreases
- (C) Remains the same
- (D) None of these

XII MCQ - PHYSICS

QUESTION PAPER – SET B

1.

A thin rod of length f/3 lies along the axis of a concave mirror of focal length f. One end of

	its magnified image touches an end of the rod. The length of the image is:				
	(A) <i>f</i>	(B) $\frac{1}{2}f$	(C) 2f	(D) $\frac{1}{4}f$	
2.	In a concave mirror, an object is placed at a distance $_1$ from the focus and the real is formed at a distance $_2$ from the focus. Then the focal length of the mirror is :				
	(A) _{1 2}	(B) _{1 2}	(C) $_1 + _2 /2$	(D) $\frac{1}{l}$ 2	
3.	Refractive index of dia totally internally reflec		s the minimum angle o	of incidence of a ray to get	
	(A) 42°	(B) 35°	(C) 24.5°	(D) 48.4°	
4.	A plano convex lens ha focal length will be	as focal length f = 20 α	cm. If its plane surface	is silvered, then new	
	(A) 20 cm	(B) 5 cm	(C) 10 cm	(D) 25 cm	
5.	A ray of light is incident at an angle of incidence, i, one face of prism of angle A (assumed to be small) and emerges normally from the opposite face. If the refractive index of the prism is μ , the angle of incidence i, is nearly equal to:				
	(A) μ A	(B) $\frac{\mu A}{2}$	(C) A /μ	(D A/2 μ	
6.	For an angle of minimum deviation of a prism to be equal to its refracting angle, the prism must be made of a material whose refractive index:				
	(A) Lies between $\sqrt{2}$ and 1 (C) is less than 1		(B) lies between 2 and $\sqrt{2}$ (D) is greater than 2		
7.	In Young's double slit expt., the intensity is I at a point where the path difference is $\lambda/6$, where λ is wavelength of light used. If I ₀ denotes the maximum intensity, then I/I ₀ is equal to				
	(A) 3/4	(B) $1/\sqrt{2}$	(C) $\sqrt{3}/2$	(D) $\frac{1}{2}$	
8.	Two periodic waves of same direction. The su			at the same time in the	

(A) $I_1:I_2$ (B) $(\sqrt{I}_1+\sqrt{I}_2)^2$ (C) $(\sqrt{I}_1-\sqrt{I}_2)^2$ (D) $2\sqrt{I}_1+\sqrt{I}_2$

9.	At two points P and Q on screen in Young's double slit experiment, waves from slits and S_2 have a path difference of 0 and $\frac{\lambda}{4}$ respectively, the ratio of intensities at P an will be				
	(A) 3:2	(B) 2:1	(C) $\sqrt{2}$: 1	(D) 4:1	
10.	Assuming human pupil to have a radius of 0.25 cm and a comfortable viewing distance of 25 cm, the minimum separation between two objects that human eye can resolve at 500 nm wavelength is				

11. A photoelectric surface is illuminated successively by monochromatic light of wavelength λ and $\frac{\lambda}{2}$. If the maximum kinetic energy of the emitted photoelectrons in the second case is 3 times that of first case, the work function of the material is (h = plank's constant c = speed of light)

(C) $100 \, \mu m$

(D) 300 μm

(A) $\frac{hc}{3\lambda}$ (B) $\frac{hc}{2\lambda}$ (C) $\frac{hc}{\lambda}$

(B) 30 μm

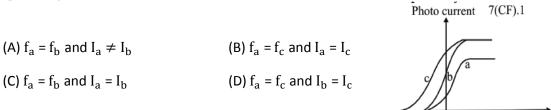
12. If K_1 and K_2 are maximum kinetic energies of photoelectrons emitted when light of wavelength $_1$ and $_2$ respectively are incident on a metallic surface. If $_1$ = 3 $_2$ then

(A) $K_1 > \left(\frac{K_2}{3}\right)$ (B) $K_1 < \left(\frac{K_2}{3}\right)$ (C) $K_1 = 3K_2$ (D) $K_1 = 3K_1$

13. According to Einstein's photoelectric equation, the plot of the kinetic energy of the emitted photo-electrons from a metal verses the frequency of the incident radiation gives a straight line whose slope.

(A) depends on the nature of the metal used

 $(A) 1 \mu m$


- (B) depends on the intensity of the radiation
- (C) depends both on the intensity of the radiation and the metal used
- (D) is the same for all metals and independent of the intensity of the radiation

14. A and B are two metals with threshold frequencies $1.8 \times 10^{14} \ H_Z$ and $2.2 \times 10^{14} \ H_Z$. Two identical photons of energy 0.825 eV each are incident on them. Then photoelectrons are emitted in (take $h = 6.6 \times 10^{-34} \ J/S$)

(A) B alone (B) A alone

(C) Neither A nor B (D) Both A and B

15. The figure 7(CF).1 shows the variation of photo current with anode potential for a photosensitive surface for three different radiations. Let I_a , I_b , and I_c be the intensities and f_a , f_b , and f_c be the frequencies for the curves a, b and c respectively.

Anode potentialO

16. Consider 3rd orbit of Helium. Using non-relativistic approach, the speed of electron in this orbit will be [given K = 9 X 10^9 , Z = 2 and $h = 6.6 \times 10^{-34} J_S$]

(A)
$$1.46 \times 10^6 \text{ m/s}$$

(B)
$$0.73 \times 10^6 \text{ m/s}$$

(C)
$$3 \times 10^8 \text{ m/s}$$

(D)
$$2.92 \times 10^6 \text{ m/s}$$

17. In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmar Series is :

(A)
$$\frac{5}{27}$$

(B)
$$\frac{4}{9}$$

(C)
$$\frac{9}{4}$$

(D)
$$\frac{27}{5}$$

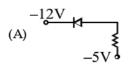
18. Binding energy per nucleon in Deutron ($_1H^2$) and Hellium ($_2He^4$) atoms is 1.1 Me V and 7.0 Me V respectively. If two deutron atoms combine to form a single helium atom, then energy released is:

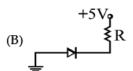
- (A) 13.9 MeV
- (B) 19.2 MeV
- (C) 23.6 MeV
- (D) 26.9 MeV

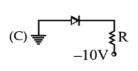
19. Nuclear reactor in which uranium – 235 is used as fuel, uses 2 kg of uranium – 235 in 30 days. The power output of the reactor will be (given Energy released per fission = 185 MeV)

- (A) 43.5 MW
- (B) 58.5 MW
- (C) 69.6 MW
- (D) 73.1 MW

20. The thermal neutrons in a nuclear reactor may be regarded as a gas at a temperature T°K, which obeys the laws of kinetic theory. Then the de-Broglie wavelength of such thermal neutrons in terms of temperature T, mass of neutron m is given by

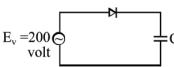

(A)
$$\lambda = \frac{h}{\sqrt{3m \ KT}}$$


(B)
$$\lambda = \frac{h}{\sqrt{6m \ KT}}$$


(C)
$$\lambda = \frac{h}{\sqrt{5m \ KT}}$$


(D)
$$\lambda = \frac{h}{\sqrt{2m \ KT}}$$

21. Of the diodes shown in the following diagrams, which one is reverse biased.



22. A sinusoidal voltage of r.m.s. voltage of 200 volt is connected to the function diode and a capacitor C in the circuit shown in figure. so that half wave rectification occurs. The final potential difference in volt across C is

- (A) 500
- (B) 283
- (C) 200
- (D) 41

23.	The semiconductor X is made by doping a germamium crystal with arsenic ($Z = 33$). A
	second semiconductor Y is made by doping germanium with indium (Z = 49). The two are
	joined end to end and connected to a battery as shown, which of the following statements
	is correct?
	$\vdash x \mid y \vdash$

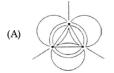
- (A) X is P-type, Y is N-type and the junction is forward biased.
- (B) X is N-type, Y is P-type and the junction is forward biased.
- (C) X is P-type, Y is N-type and the junction is reverse biased.
- (D) X is N-type, Y is P-type and the junction is reverse biased.
- Electromagnetic wave of frequencies higher than $9\sqrt{2}$ MHz are found to be not reflected 24. by the ionosphere on a particular day at a place. The maximum electron density in the ionosphere is:

(A)
$$\sqrt{5} \times 10^{12} m^{-3}$$

(B)
$$\sqrt{2} \times 10^{12} m^{-3}$$

(C)
$$2 \times 10^{12} m^{-3}$$

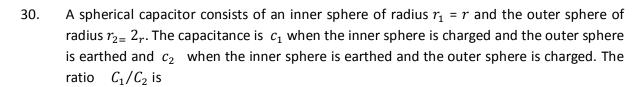
(D)
$$5 \times 10^{12} m^{-3}$$

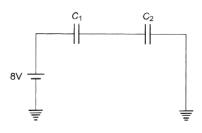

- 25. An EM wave of maximum frequency 300 kHz and critical frequency 100 kHz is to transmitted to a height equal to 150 km. Calculate the skip distance.
 - (A) 624 km
- (B) 849 km
- (C) 636 km
- (D) 942 km
- 26. Three point charges Q, -2Q and -2Q are placed at the vertices of an equilateral triangle of side r. The work done to increase their separation to 2r is

(B)
$$\frac{Q^2}{4\pi\varepsilon_0 r}$$
 (C) $\frac{2Q^2}{4\pi\varepsilon_0 r}$ (D) $\frac{\sqrt{2}Q^2}{4\pi\varepsilon_0 r}$

(C)
$$\frac{2Q^2}{4\pi\varepsilon_0 r}$$

(D)
$$\frac{\sqrt{2}Q^2}{4\pi\varepsilon_0 n}$$


- 27. A metal sphere of radius R carries a charge Q, electric field on its surface is E and the electric potential is V. If R is doubled keeping Q the same, then new values of E and V will be
- (A) $\frac{E}{4}$ and $\frac{V}{2}$ (B) $\frac{E}{2}$ and $\frac{V}{4}$ (C) 4E and 2V
- (D) 2E and 4V
- 28. A charge q is placed at the centre of the line joining two equal charges Q. The system of the three charges will be in equilibrium if q is equal to
 - (A) $-\frac{Q}{a}$
- (B) $-\frac{Q}{4}$ (C) $+\frac{Q}{2}$ (D) $+\frac{Q}{4}$
- 29. Three positive charges of equal value q, are placed at the vertices of an equilateral triangle. The resulting lines of force should be sketched as in (see figure)


(A) $\frac{1}{2}$

(B) $\frac{1}{2}$

(C) 2

(D) 3

In the circuit shown in figure $c_1=3\mu F$ and $c_1=9\mu F$. The charge on capacitor c_2 is 31.

(A) $9\mu C$

(B) 18μ*C*

(C) $27\mu C$

(D) $81\mu C$

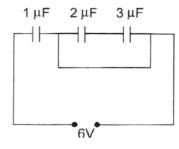
32. Two parallel plate capacitors of capacitances C and 2C are connected in parallel and charged to potential difference V by a battery. The battery is then disconnected and the space between the plates of capacitor of capacitance C is completely filled with a material of dielectric constant K. The potential difference across the capacitors now becomes

(A) $\frac{V}{K+1}$

(B) $\frac{2V}{K+2}$ (C) $\frac{3V}{K+2}$ (D) $\frac{3V}{K+3}$

A parallel plate capacitor of place area A has a charge Q. The force on each plate of the 33. capacitor is

(A) $\frac{2Q^2}{\epsilon_0 A}$ (B) $\frac{Q^2}{\epsilon_0 A}$

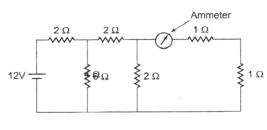

In n drops, each capacitance C, coalesce to form a single big drop, the capacitance of the 34. big drop will be

(A) n^3C

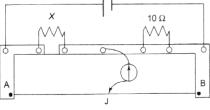
(B) *nC*

(C) $n^{5/3}:1$ (D) $n^2:1$

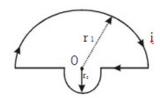
Figure shows three capacitors connected to a 6V power supply. What is the charge on the 35. 2μF capacitor?


(A) $1\mu C$

(B) 2μ*C*


(C) $3\mu C$

(D) $4\mu C$


- 36. Two wires of equal lengths, equal diameters and having resistivities p_1 and p_2 are connected in series. The equivalent resistivity of the combination is
 - (A) $p_1 + p_2$
- (B) $\frac{1}{2} p_1 + p_2$ (C) $\frac{p_1 + p_2}{p_1 + p_2}$
- (D) p_1p_2
- In the circuit shown in figure, the reading of ammeter is 37.

- (A) 1A
- (B) 2A
- (C)3A
- (D) 4A
- 38. A meter bridge is set-up as shown in figure to determine an unknown resistance 'X' using a standard 10 ohm resistor. The galvanometer shows null point when tapping-key is at 52 cm mark. The end-corrections are 1 cm and 2 cm respectively for the ends A and B. The determined value of 'X' is

- (A) 10.2 ohm
- (B) 10.6 ohm
- (C) 10.8 ohm
- (D) 11.1 ohm
- 39. In figure, there are two semi-circles of radii r_1 and r_2 in which a current *i* is flowing. The magnetic induction at centre O will be

- (A) $\frac{\mu_0 i}{4} (r_1 + r_2)$ (B) $\frac{\mu_0 i}{4} (r_1 r_2)$
- (C) $\frac{\mu_0 i}{4} \left(\frac{r_1 + r_2}{r_1 r_2} \right)$ (D) $\frac{\mu_0 i}{4} \left(\frac{r_1 r_2}{r_1 r_2} \right)$
- Soft iron is preferred as the core of transformers due to its 40.
 - (A) high retentivity, high coercivity
- (B) high retentivity, low coercivity
- (C) low retentivity, high coercivity
- (D) low retentivity, low coercivity
- 41. The magnetic flux through a circuit of resistance R changes by an amount $\Delta \emptyset$ in time Δt . Then the total quantity of electric charge Q that during this time passes any point of the circuit is given by

 - (A) $Q = \frac{\Delta \emptyset}{\Delta t}$ (B) $Q = \frac{\Delta \emptyset}{\Delta t} \times R$ (D) $Q = \frac{\Delta \emptyset}{\Delta t} + R$

42. Wavelength range for visible spectrum is,			
(A) (4000 - 8000) °A	(B) (40 - 80) °A	(C) (1200 - 1800) °A	(D) (8000 - 12000) °A
In Young's experiment the distance between two slits is $d/3$ and the distance between the screen and the slits is 3D. The number of fringes in $1/3$ m on the screen, formed monochromatic light of wavelength 3λ , will be			
(A) $\frac{d}{9D\lambda}$	(B) $\frac{d}{27D\lambda}$	(C) $\frac{d}{81D\lambda}$	(D) $\frac{d}{D\lambda}$
Polaroid glass is used	in sun glasses because	е	
(B) It is fashionable		account of polarisation	
• •	·	fractive index is equal	to the refractive index of
(A) become zero	(B) become infinite	(C) reduce	(D) increase
46. A mark at the bottom of a beaker containing liquid appears to rise by 0.1 m. The dept the liquid is 1m. The refractive index of liquid is			
(A) 1.33	(B) $\frac{9}{10}$	(C) $\frac{10}{9}$	(D) 1.5
47. If the work function of the metal is \emptyset and the frequency of incident light is ν there emission of photoelectrons when			
$(A) \ v < \frac{\emptyset}{h}$	(B) $v = \frac{\emptyset}{h}$	(C) $v > \frac{\emptyset}{h}$	(D) (C) $v \ge \frac{\emptyset}{h}$
A monochromatic source of light is placed at a distance d from a metal surface. Photoelectrons are ejected at rate n , kinetic energy being E. If the source is brought near to distance $\frac{d}{2}$, then the rate and kinetic energy per photoelectron becomes nearly:			
(A) 2 n and 2 E	(B) 4 n and 4 E	(C) 4 n and E	(D) <i>n and 4 E</i>
In order to carry out	the nuclear reaction:	$_{1}H^{1} + _{1}H^{1} + _{1}H^{2} = _{2}He^{4}$	$+ 1e^0 + \text{energy}$
(A) very high temperature will only be necessary(B) moderate temperature and very high pressure will be necessary(C) very high temperature and relative high pressure would be necessary(D) very high temperature and low pressure would be necessary			
• •	•		eakage of neutrons from a
(A) R $\propto r$	(B) R $\propto \frac{1}{r}$	(C) R $\propto r^2$	(D) R $\propto \frac{1}{r^2}$
	(A) $(4000 - 8000)$ °A In Young's experiment screen and the slits monochromatic light (A) $\frac{d}{9D\lambda}$ Polaroid glass is used (A) It reduces the light (B) It is fashionable (C) It has good colout (D) It is cheaper A convex lens is dipperent lens. Then its focal colout (A) become zero A mark at the bottom the liquid is 1m. The interpretation of photoelet (A) $v < \frac{\emptyset}{h}$ A monochromatic is Photoelectrons are expected distance $\frac{d}{2}$, then the liquid is 1m. The interpretation of the liquid is 1m. The interpretation of photoelectrons are expected distance $\frac{d}{2}$, then the liquid is 1m. The interpretation of the liquid is 1m. The interpretation of photoelectrons are expected distance $\frac{d}{2}$, then the liquid is 1m. The interpretation of the liquid is 1m. The interpretation of photoelectrons are expected by the liquid is 1m. The interpretation of photoelectrons are expected by the liquid is 1m. The interpretation of photoelectrons are expected by the liquid is 1m. The interpretation of photoelectrons are expected by the liquid is 1m. The interpretation of photoelectrons are expected by the interpretation of photoelectrons are expected by the liquid is 1m. The interpretation of photoelectrons are expected by the inte	(A) $(4000 - 8000)$ °A (B) $(40 - 80)$ °A In Young's experiment the distance between screen and the slits is 3D. The number of monochromatic light of wavelength 3λ , will $(A) \frac{d}{9D\lambda}$ (B) $\frac{d}{27D\lambda}$ Polaroid glass is used in sun glasses because (A) It reduces the light intensity to half on a (B) It is fashionable (C) It has good colour (D) It is cheaper A convex lens is dipped in a liquid whose rethe lens. Then its focal length will (A) become zero (B) become infinite A mark at the bottom of a beaker containing the liquid is 1m. The refractive index of liquid (A) 1.33 (B) $\frac{9}{10}$ If the work function of the metal is \emptyset and the emission of photoelectrons when (A) $v < \frac{\emptyset}{h}$ (B) $v = \frac{\emptyset}{h}$ A monochromatic source of light is play Photoelectrons are ejected at rate n , kinet to distance $\frac{d}{2}$, then the rate and kinetic energy of the nuclear reaction: (A) $v = \frac{1}{2}$ (B) $v = \frac{1}{2}$ (B) $v = \frac{1}{2}$ (C) very high temperature will only be necessary (B) moderate temperature and relative high pressure will not production of nespherical body of uranium of radius $v = \frac{1}{2}$ (D) very high temperature and relative high pressure will not pressure with the rate of production of nespherical body of uranium of radius $v = \frac{1}{2}$ production of nespherical body of uranium of radius $v = \frac{1}{2}$ production of nespherical body of uranium of radius $v = \frac{1}{2}$ production of nespherical body of uranium of radius $v = \frac{1}{2}$ production of nespherical body of uranium of radius $v = \frac{1}{2}$	(A) $(4000-8000)$ *A (B) $(40-80)$ *A (C) $(1200-1800)$ *A In Young's experiment the distance between two slits is $d/3$ and screen and the slits is 3D. The number of fringes in $1/3$ m of monochromatic light of wavelength 3λ , will be (A) $\frac{d}{9p\lambda}$ (B) $\frac{d}{27D\lambda}$ (C) $\frac{d}{81D\lambda}$ Polaroid glass is used in sun glasses because (A) It reduces the light intensity to half on account of polarisation (B) It is fashionable (C) It has good colour (D) It is cheaper A convex lens is dipped in a liquid whose refractive index is equal the lens. Then its focal length will (A) become zero (B) become infinite (C) reduce A mark at the bottom of a beaker containing liquid appears to rise the liquid is 1m. The refractive index of liquid is (A) 1.33 (B) $\frac{9}{10}$ (C) $\frac{10}{9}$ If the work function of the metal is \emptyset and the frequency of incident emission of photoelectrons when (A) $v < \frac{\emptyset}{h}$ (B) $v = \frac{\emptyset}{h}$ (C) $v > \frac{\emptyset}{h}$ A monochromatic source of light is placed at a distance of Photoelectrons are ejected at rate n , kinetic energy being E. If the to distance $\frac{d}{2}$, then the rate and kinetic energy per photoelectron (A) $2n$ and $2E$ (B) $4n$ and $4E$ (C) $4n$ and E In order to carry out the nuclear reaction: $H^1 + _1H^1 + _1H^2 = _2He^4$ (A) very high temperature will only be necessary (B) moderate temperature and relative high pressure would be necessary (C) very high temperature and relative high pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature and low pressure would be necessary (D) very high temperature

MCQ's Answer Key of Set B

ANSWER KEY - MATHEMATICS

01. (A)	02. (C)	03. (C)	04. (B)	05. (C)
06. (D)	07. (C)	08. (A)	09. (C)	10. (D)
11. (C)	12. (D)	13. (B)	14. (B)	15. (A)
16. (C)	17. (D)	18. (D)	19. (B)	20. (A)
21. (A)	22. (A)	23. (C)	24. (D)	25. (B)
26. (D)	27. (C)	28. (B)	29. (D)	30. (A)
31. (A)	32. (D)	33. (C)	34. (B)	35. (D)
36. (C)	37. (A)	38. (A)	39. (B)	40. (D)
41. (D)	42. (A)	43. (B)	44. (B)	45. (B)
46. (D)	47. (A)	48. (C)	49. (B)	50. (D)

ANSWERKEY - PHYSICS

1.	В	2. A	3. C	4. C
5.	Α	6. B	7. A	8. D
9.	В	10. B	11. B	12. B
13.	D	14. B	15. A	16. A
17.	Α	18. C	19. B	20. A
21.	В	22. B	23. D	24. C
25.	В	26. A	27. A	28. B
29.	C	30. B	31. B	32. C
33.	С	34. D	35. B	36. B
37.	Α	38. B	39. D	40. D
41.	D	42. A	43. C	44. A
45.	В	46. C	47. A	48. C
49.	C	50. A		

ANSWERKEY - BIOLOGY

1. A 5. C	2. B 6. A	3. B 7. A	4. B 8. C
9. B	10. D	11. D	12. C
13. B	14. C	15. A	16. D
17. D	18. B	19. A	20. C
21. A	22. A	23. C	24. B
25. C	26. B	27. B	28. D
29. A	30. D	31. A	32. D
33. D	34. A	35. D	36. A
37. D	38. B	39. C	40. B
41. B	42. C	43. D	44. A
45. B	46. C	47. B	48. A
49. A	50. D		

ANSWERKEY - CHEMISTRY

1. A	2. C	3. B	4. B
5. D	6. B	7. A	8. A
9. A	10. C	11. B	12. C
13. B	14. B	15. C	16. B
17. B	18. B	19. A	20. B
21. C	22. A	23. C	24. C
25. C	26. D	27. C	28. D
29. B	30. A	31. D	32. B
33. B	34. B	35. C	36. B
37. B	38. B	39. C	40. B
41. C	42. D	43. B	44. C
45. B	46. C	47. D	48. D
49. A	50. B		